3.528 \(\int \frac{1}{x (a+b x^2)^{9/2}} \, dx\)

Optimal. Leaf size=95 \[ \frac{1}{a^4 \sqrt{a+b x^2}}+\frac{1}{3 a^3 \left (a+b x^2\right )^{3/2}}+\frac{1}{5 a^2 \left (a+b x^2\right )^{5/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )}{a^{9/2}}+\frac{1}{7 a \left (a+b x^2\right )^{7/2}} \]

[Out]

1/(7*a*(a + b*x^2)^(7/2)) + 1/(5*a^2*(a + b*x^2)^(5/2)) + 1/(3*a^3*(a + b*x^2)^(3/2)) + 1/(a^4*Sqrt[a + b*x^2]
) - ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]]/a^(9/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0585164, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {266, 51, 63, 208} \[ \frac{1}{a^4 \sqrt{a+b x^2}}+\frac{1}{3 a^3 \left (a+b x^2\right )^{3/2}}+\frac{1}{5 a^2 \left (a+b x^2\right )^{5/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )}{a^{9/2}}+\frac{1}{7 a \left (a+b x^2\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x^2)^(9/2)),x]

[Out]

1/(7*a*(a + b*x^2)^(7/2)) + 1/(5*a^2*(a + b*x^2)^(5/2)) + 1/(3*a^3*(a + b*x^2)^(3/2)) + 1/(a^4*Sqrt[a + b*x^2]
) - ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]]/a^(9/2)

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \left (a+b x^2\right )^{9/2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x (a+b x)^{9/2}} \, dx,x,x^2\right )\\ &=\frac{1}{7 a \left (a+b x^2\right )^{7/2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{x (a+b x)^{7/2}} \, dx,x,x^2\right )}{2 a}\\ &=\frac{1}{7 a \left (a+b x^2\right )^{7/2}}+\frac{1}{5 a^2 \left (a+b x^2\right )^{5/2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{x (a+b x)^{5/2}} \, dx,x,x^2\right )}{2 a^2}\\ &=\frac{1}{7 a \left (a+b x^2\right )^{7/2}}+\frac{1}{5 a^2 \left (a+b x^2\right )^{5/2}}+\frac{1}{3 a^3 \left (a+b x^2\right )^{3/2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{x (a+b x)^{3/2}} \, dx,x,x^2\right )}{2 a^3}\\ &=\frac{1}{7 a \left (a+b x^2\right )^{7/2}}+\frac{1}{5 a^2 \left (a+b x^2\right )^{5/2}}+\frac{1}{3 a^3 \left (a+b x^2\right )^{3/2}}+\frac{1}{a^4 \sqrt{a+b x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,x^2\right )}{2 a^4}\\ &=\frac{1}{7 a \left (a+b x^2\right )^{7/2}}+\frac{1}{5 a^2 \left (a+b x^2\right )^{5/2}}+\frac{1}{3 a^3 \left (a+b x^2\right )^{3/2}}+\frac{1}{a^4 \sqrt{a+b x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x^2}\right )}{a^4 b}\\ &=\frac{1}{7 a \left (a+b x^2\right )^{7/2}}+\frac{1}{5 a^2 \left (a+b x^2\right )^{5/2}}+\frac{1}{3 a^3 \left (a+b x^2\right )^{3/2}}+\frac{1}{a^4 \sqrt{a+b x^2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )}{a^{9/2}}\\ \end{align*}

Mathematica [C]  time = 0.0057869, size = 36, normalized size = 0.38 \[ \frac{\, _2F_1\left (-\frac{7}{2},1;-\frac{5}{2};\frac{b x^2}{a}+1\right )}{7 a \left (a+b x^2\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x^2)^(9/2)),x]

[Out]

Hypergeometric2F1[-7/2, 1, -5/2, 1 + (b*x^2)/a]/(7*a*(a + b*x^2)^(7/2))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 85, normalized size = 0.9 \begin{align*}{\frac{1}{7\,a} \left ( b{x}^{2}+a \right ) ^{-{\frac{7}{2}}}}+{\frac{1}{5\,{a}^{2}} \left ( b{x}^{2}+a \right ) ^{-{\frac{5}{2}}}}+{\frac{1}{3\,{a}^{3}} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}}+{\frac{1}{{a}^{4}}{\frac{1}{\sqrt{b{x}^{2}+a}}}}-{\ln \left ({\frac{1}{x} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{2}+a} \right ) } \right ){a}^{-{\frac{9}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^2+a)^(9/2),x)

[Out]

1/7/a/(b*x^2+a)^(7/2)+1/5/a^2/(b*x^2+a)^(5/2)+1/3/a^3/(b*x^2+a)^(3/2)+1/a^4/(b*x^2+a)^(1/2)-1/a^(9/2)*ln((2*a+
2*a^(1/2)*(b*x^2+a)^(1/2))/x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(9/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.48295, size = 732, normalized size = 7.71 \begin{align*} \left [\frac{105 \,{\left (b^{4} x^{8} + 4 \, a b^{3} x^{6} + 6 \, a^{2} b^{2} x^{4} + 4 \, a^{3} b x^{2} + a^{4}\right )} \sqrt{a} \log \left (-\frac{b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{a} + 2 \, a}{x^{2}}\right ) + 2 \,{\left (105 \, a b^{3} x^{6} + 350 \, a^{2} b^{2} x^{4} + 406 \, a^{3} b x^{2} + 176 \, a^{4}\right )} \sqrt{b x^{2} + a}}{210 \,{\left (a^{5} b^{4} x^{8} + 4 \, a^{6} b^{3} x^{6} + 6 \, a^{7} b^{2} x^{4} + 4 \, a^{8} b x^{2} + a^{9}\right )}}, \frac{105 \,{\left (b^{4} x^{8} + 4 \, a b^{3} x^{6} + 6 \, a^{2} b^{2} x^{4} + 4 \, a^{3} b x^{2} + a^{4}\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{-a}}{\sqrt{b x^{2} + a}}\right ) +{\left (105 \, a b^{3} x^{6} + 350 \, a^{2} b^{2} x^{4} + 406 \, a^{3} b x^{2} + 176 \, a^{4}\right )} \sqrt{b x^{2} + a}}{105 \,{\left (a^{5} b^{4} x^{8} + 4 \, a^{6} b^{3} x^{6} + 6 \, a^{7} b^{2} x^{4} + 4 \, a^{8} b x^{2} + a^{9}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(9/2),x, algorithm="fricas")

[Out]

[1/210*(105*(b^4*x^8 + 4*a*b^3*x^6 + 6*a^2*b^2*x^4 + 4*a^3*b*x^2 + a^4)*sqrt(a)*log(-(b*x^2 - 2*sqrt(b*x^2 + a
)*sqrt(a) + 2*a)/x^2) + 2*(105*a*b^3*x^6 + 350*a^2*b^2*x^4 + 406*a^3*b*x^2 + 176*a^4)*sqrt(b*x^2 + a))/(a^5*b^
4*x^8 + 4*a^6*b^3*x^6 + 6*a^7*b^2*x^4 + 4*a^8*b*x^2 + a^9), 1/105*(105*(b^4*x^8 + 4*a*b^3*x^6 + 6*a^2*b^2*x^4
+ 4*a^3*b*x^2 + a^4)*sqrt(-a)*arctan(sqrt(-a)/sqrt(b*x^2 + a)) + (105*a*b^3*x^6 + 350*a^2*b^2*x^4 + 406*a^3*b*
x^2 + 176*a^4)*sqrt(b*x^2 + a))/(a^5*b^4*x^8 + 4*a^6*b^3*x^6 + 6*a^7*b^2*x^4 + 4*a^8*b*x^2 + a^9)]

________________________________________________________________________________________

Sympy [B]  time = 7.72519, size = 5250, normalized size = 55.26 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**2+a)**(9/2),x)

[Out]

352*a**32*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/
2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**
(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 105*a
**32*log(b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x*
*6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**
7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) - 210*a**32*log(s
qrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**
3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)
*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 2924*a**31*
b*x**2*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*
b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59
/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 1050*a**
31*b*x**2*log(b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b*
*3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2
)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) - 2100*a**31
*b*x**2*log(sqrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*
a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25
200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20)
+ 10852*a**30*b**2*x**4*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 +
 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**
12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*
x**20) + 4725*a**30*b**2*x**4*log(b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4
+ 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x*
*12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10
*x**20) - 9450*a**30*b**2*x**4*log(sqrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(6
9/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a*
*(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*
a**(53/2)*b**10*x**20) + 23630*a**29*b**3*x**6*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 945
0*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 4
4100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18
 + 210*a**(53/2)*b**10*x**20) + 12600*a**29*b**3*x**6*log(b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9
450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 +
 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**
18 + 210*a**(53/2)*b**10*x**20) - 25200*a**29*b**3*x**6*log(sqrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(
71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63
/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a*
*(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 33280*a**28*b**4*x**8*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 21
00*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920
*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 +
2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 22050*a**28*b**4*x**8*log(b*x**2/a)/(210*a**(73/2) +
2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 529
20*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16
+ 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) - 44100*a**28*b**4*x**8*log(sqrt(1 + b*x**2/a) + 1)/(
210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)
*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(5
7/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 31442*a**27*b**5*x**10*sqrt(1 + b*x
**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a
**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 94
50*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 26460*a**27*b**5*x**10*log(
b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 4410
0*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 +
 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) - 52920*a**27*b**5*x**10*l
og(sqrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)
*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(5
9/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 19924*a
**26*b**6*x**12*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a
**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 252
00*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) +
 22050*a**26*b**6*x**12*log(b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 2520
0*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 +
25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20
) - 44100*a**26*b**6*x**12*log(sqrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)
*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61
/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(
53/2)*b**10*x**20) + 8162*a**25*b**7*x**14*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a*
*(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100
*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 2
10*a**(53/2)*b**10*x**20) + 12600*a**25*b**7*x**14*log(b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450
*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44
100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18
+ 210*a**(53/2)*b**10*x**20) - 25200*a**25*b**7*x**14*log(sqrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71
/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2
)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(
55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 1960*a**24*b**8*x**16*sqrt(1 + b*x**2/a)/(210*a**(73/2) + 2100
*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a
**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 21
00*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 4725*a**24*b**8*x**16*log(b*x**2/a)/(210*a**(73/2) + 21
00*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920
*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 +
2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) - 9450*a**24*b**8*x**16*log(sqrt(1 + b*x**2/a) + 1)/(21
0*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b
**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/
2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 210*a**23*b**9*x**18*sqrt(1 + b*x**2/
a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**(6
5/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450*a
**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 1050*a**23*b**9*x**18*log(b*x**
2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*x**6 + 44100*a**
(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b**7*x**14 + 9450
*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) - 2100*a**23*b**9*x**18*log(sqr
t(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**3*
x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)*b
**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) + 105*a**22*b**
10*x**20*log(b*x**2/a)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 25200*a**(67/2)*b**
3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 + 25200*a**(59/2)
*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**20) - 210*a**22*b
**10*x**20*log(sqrt(1 + b*x**2/a) + 1)/(210*a**(73/2) + 2100*a**(71/2)*b*x**2 + 9450*a**(69/2)*b**2*x**4 + 252
00*a**(67/2)*b**3*x**6 + 44100*a**(65/2)*b**4*x**8 + 52920*a**(63/2)*b**5*x**10 + 44100*a**(61/2)*b**6*x**12 +
 25200*a**(59/2)*b**7*x**14 + 9450*a**(57/2)*b**8*x**16 + 2100*a**(55/2)*b**9*x**18 + 210*a**(53/2)*b**10*x**2
0)

________________________________________________________________________________________

Giac [A]  time = 3.13541, size = 109, normalized size = 1.15 \begin{align*} \frac{\arctan \left (\frac{\sqrt{b x^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a} a^{4}} + \frac{105 \,{\left (b x^{2} + a\right )}^{3} + 35 \,{\left (b x^{2} + a\right )}^{2} a + 21 \,{\left (b x^{2} + a\right )} a^{2} + 15 \, a^{3}}{105 \,{\left (b x^{2} + a\right )}^{\frac{7}{2}} a^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(9/2),x, algorithm="giac")

[Out]

arctan(sqrt(b*x^2 + a)/sqrt(-a))/(sqrt(-a)*a^4) + 1/105*(105*(b*x^2 + a)^3 + 35*(b*x^2 + a)^2*a + 21*(b*x^2 +
a)*a^2 + 15*a^3)/((b*x^2 + a)^(7/2)*a^4)